

Penn State/US NRC Rod Bundle Test Facility and Reflood Heat Transfer Program (RBHT)

L.E. Hochreiter

Mechanical and Nuclear Engineering Department

The Pennsylvania State University

Program Background

- RBHT Contract was initiated in November 1997 with the Nuclear Regulatory Commission Office of Research.
- Is a joint program between the College of Engineering and the Applied Research Laboratory (ARL).
- Principal Investigators

Dr. L.E. Hochreiter

Dr. F-B. Cheung

Dr. T.F. Lin

Background

- Loss of Coolant Accident (LOCA) is the most limiting design basis accident for PWRs.
- LOCA can limit the peak kW/ft values as well as the allowable power shapes for the plant operation.
- LOCA is a 'calculated' accident, the performance of the safety systems in mitigating the accident depends on the computer models used.

Peak Cladding Temperature (PCT) is calculated to occur during the Reflood period of the transient.

- Heat transfer rates are the smallest.
- Several different heat transfer mechanisms control the heat transfer.
- Flow is highly dispersed and non-equilibrium with superheated steam and liquid droplets.
- Quench front progresses up the fuel rods as the core quenches.
- Reflood is also the most limiting LOCA period with Best-Estimate codes.

Flow Regimes During Reflood

Reflood Heat Transfer Phenomena

System Schematic with Instrumentation

RBHT

PENN STATE UNIVERSITY REHT-TEST FACILITY INSTRUMENTED HEATER ROD LOCATIONS

GR-0 UNINSTRUMENTED
GR-1 THRU 8 INSTRUMENTED

RBHT – Steam Probe Rake

Laser Illuminated Digital Imaging System Setup

RBHT

Flow Housing Instrumentation

RBHT Matrix

- Flooding Rate (inch/s): 0.54 10
- Pressure (psia): 20 60
- Inlet Subcooling (deg F): 20 150
- Initial Temperature (deg F): 1200 1700
- Peak Power* (kW/ft): 0.4 0.7

^{*} Power was held constant, did not decay.

- Spacer grids can have a significant effect on the heat transfer due to
 - convective enhancement
 - grid quenching
 - entrained droplet break-up

PENNSTATE

RBHT, Experiment 1096, 20 psia, 1.0 in/sec, 1400 F initial temperature, 20 F subcooling

RBHT, Experiment 1383, 40 psia, 1.0 in/sec, 1400 F initial temperature, 20 F subcooling

RBHT RUN 945

Upper Plenum Pressure	0.27 MPa
Initial Clad Temperature at 2.74m	1040 K
Rod Peak Power	1.3 kW/m
Cold Fill Rate	25.3 mm/sec
Injected Coolant Temperature	392K

Comparison of Upgraded Code-Calculated and Experimentally Measured Clad Temperatures for RBHT – Run 945 at 2.74m Axial Elevation

Comparison of Upgraded Code-Calculated and Experimentally Measured Vapor Temperatures for RBHT – Run 945 at 2.92m Axial Elevation

Comparison of Upgraded Code-Calculated and Experimentally Measured Quench Front Location for RBHT – Run 945 as a Function of Time

RBHT RUN 937

Upper Plenum Pressure	0.14 MPa
Initial Clad Temperature at 2.74m	1040 K
Rod Peak Power	1.3 kW/m
Cold Fill Rate	24.9 mm/sec
Injected Coolant Temperature	371 K

Comparison of Upgraded Code-Calculated and Experimentally Measured Clad Temperatures for RBHT – Run 937 at 2.74m Axial Elevation

Comparison of Upgraded Code-Calculated and Experimentally Measured Vapor Temperatures for RBHT – Run 937 at 2.54m Axial Elevation

Comparison of Upgraded Code-Calculated and Experimentally Measured Quench Front Location for RBHT – Run 937 as a Function of Time

Conclusions

- RBHT Program is structured to improve the reflood models in the NRC safety analysis codes.
- Improved NRC codes will aid them in audit calculations and risk informed regulations.